

HKTA467 绝缘测试仪

用户指南

更新于2024.12.01

广州虹科电子科技有限公司 www.qichebo.com

目录

第一章 概述	
第二章 外观	2
第三章 符号和报警器	
第四章 操作说明	4
4.1 安全说明	
4.2 测量和测试	
4.2.1 直流电压测量	
4.2.2 交流电压测量(频率、 占空比)	
4.2.3 mV 电压测量	
4.2.4 电阻测量	
4.2.5 直流电流测量	
4.2.6 交流电流测量(频率、 占空比)	
4.2.7 导通检查	
4.2.8 二极管测试	
4.2.9 电容测量	
4.2.10 温度测量	
4.2.11 频率(占空比)测量(电子)	
4.2.12 %4-20mA 测量	
4.2.13 绝缘电阻的测量	12
4.3 自动/手动量程选择	15
4.4 MAX/MIN	15
4.5 相对模式	15
4.6 显示背光	16
4.7 保持	16
4.8 峰值保持	16
4.9 数据存储	16

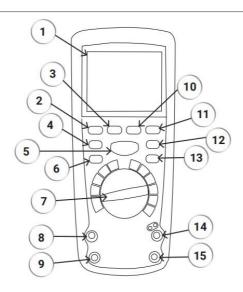
HKTA467绝缘测试仪用户指南

Ho	ng	Ke
		虹利

4.10 数据存储召回	17
4.11 清除所有数据	17
4.12 PC 无线通信	17
4.13 发送存储的数据到 PC	18
4.14 设置	18
4.15 AC + DC	19
4.16 电池电量不足指示	19
4.17 维护	19
4.17.1 电池安装	20
4.17.2 更换保险丝	20
4.18 技术规格	20

第一章 概述

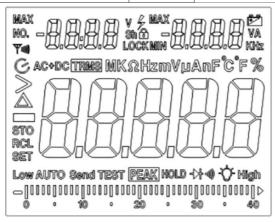
HKTA467 绝缘测试仪是专门为具有车载高电压的车辆设计的, 符合 EN61010 CAT Ⅲ (1000 V) 和 CAT IV (600 V)。绝缘测试功能允许对在高压车辆上发现的高压线缆的绝缘进行测试。它可以 作为一个独 立的设备使用,也可以通过 USB 接口无线连接到个人电脑或笔记本电脑上,这样你就可 以把结果保存或 打印出来。除绝缘测试外,它还可用于测试二极管和测量交流/直流电压、交流/直流电流、电阻、电容、频 率(电气和电子)、 占空比、导通性和热电偶温度。它可以存储和召回数据,并具有防水、坚固耐用的使用 设计。



第二章 外观

控制和插孔	
1.40,000 计数液晶显示器	9. mA、µA 和 Insulation - (绝缘 -)输入插孔
2.STORE(存储), RECALL(召回)和 < 按钮	10. REL 和 + 按钮
3.MAX/MIN 和 - 按钮	11.HOLD(保持), PeakHOLD(峰值保持)和 > 按钮
4.RANGE(量程)和 SETUP (设置) 按钮	12.EXIT(退出)和 AC+DC 按钮
5.INSULATION TEST(绝缘测试)按钮	13.背光和 USB 按钮
6.MODE(模式)和 LOCK(锁定)按钮	14. V, Ω , ➡, , •••) , ➡ ,Hz%,Temp(温度),和
	Insulation +(绝缘 +)输入插孔
7.功能开关	15.COM 输入插孔
8. 10A 输入插孔	
注意・価斜支架和电池舱位于该设备的背面	1

注息: 侧科文架和电池舱位于该设备的育团。



第三章 符号和报警器

-1))	导通	NO.	序列号
*	二极管测试	S	秒
Ť	电池状态	SET	设置参数
n	纳(10-9)电容	AC + DC	交流电+直流电
μ	微(10-6)(安培, cap)	TRMS	真有效值
m	毫(10-3)(电压,安培)	STO	存储
A	安培	RCL	召回
k	千(103)(欧姆)	AUTO	自动量程
F	法拉 (电容)	•	背光
М	兆(106)(欧姆)	PEAK	峰值保持
Ω	欧姆	V	电压
Hz	赫兹(频率)	REL	相对的
%	百分比	AUTO	自动量程
AC	交流电	HOLD	显示保持
DC	直流电	°C	摄氏度
° F	华氏度	MIN	最小
MAX	最大	74)	射频图标

第四章 操作说明

4.1 安全说明

触电的风险。高压电路,包括交流电路和直流电路,都是非常危险的,应该非常小心地测量。

- 结束使用绝缘测试仪后,始终将功能开关转到OFF(关闭)位置。
- 如果在测量期间显示OL,表示测量值超过您选择的量程,您需要更改到更高的量程。

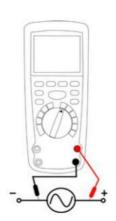
在你使用此产品之前,请参阅《PicoScope 4225A 和 4425A 安全指引》关于本产品的完整安全信息。

4.2 测量和测试

4.2.1 直流电压测量

如果电路上的电机正在接通或关闭,请不要测量直流电压。可能会发生较大的电压浪涌,从而损 坏设

- 1.将功能开关旋转到为 V DC 位置。
- 2.将黑色测试线插入 COM 插孔 (负性) 。将红色测试线插入
- V 插孔(正性)。
- 3.将黑色的测试探头尖端接触电路的负极侧,并将红色的测试探头尖端
- 接触电路的正极侧。
- 4.读取显示屏中的电压。


4.2.2 交流电压测量(频率、占空比)

外警告

触电危险!探针尖端可能不够长,无法到达一些240 V的电器插座内的带电部件,因为触点深嵌 在插 座的深处。因此,读数可能显示为0伏,但实际上插座内有电压。在你认为没有电压之前,请确保探头 的尖端接触到插座内的金属触点。

如果电路上的电机正在接通或关闭,请不要测量交流电压。可能会发生较大的电压浪涌,从而损 坏设 备。

- 1.将功能开关旋转到 VAC 位置。
- 2. 将黑色测试线插入 COM 插孔 (负性)。将红色测试线插入 V 插孔 (正性)。
- 3.将黑色的测试探头尖端接触电路的中性点侧,并将红色的测试探头尖端接触电路的正极侧。
- 4.读取主显示屏中的电压,并读取右侧辅助显示屏中的频率。
- 5.按住 MODE (模式) 按钮两秒钟, 以切换到 Hz。
- 6.读取主显示屏中的频率。
- 7.再次按住 **MODE (模式)**, 在主显示屏中读取占空比的百分比。
- 8.按 EXIT (退出)
- 9.按住 AC + DC 按钮两秒钟, 以切换到 AC + DC。
- 10.测试交流和直流的真有效值。

4.2.3 mV电压测量

如果电路上的电机正在接通或关闭,则不要测量mV电压。可能会发生较大的电压浪涌,从而损坏设备

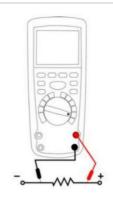

- 1.将功能开关旋转到 mV 位置。
- 2.按住 **MODE (模式)** 按钮指示 **AC 或 DC**; 或在 **AC** 量程下,

按住 AC + DC 按钮两秒钟, 切换到 AC + DC。

- 3.将黑色测试线插入 COM 插孔 (负性)。将红色测试线插入 V 插孔 (正性)。
- 4.将黑色的测试探头尖端接触电路的负极侧,并将红色的测试探头尖端接触

电路的正极侧。

5.读取显示屏中的 mV 电压。

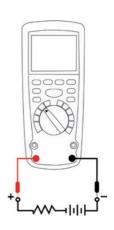

4.2.4 电阻测量

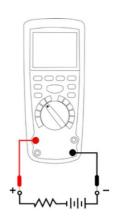
为避免触电,在进行任何电阻测量之前,断开被测单元的所有电源,并将所有电容器放电。

- 1.将功能开关旋转到Ω位置。
- 2.将黑色的测试线插入到 COM 插孔(负极)。

将红色测试线插入Ω插孔(正性)。

- 3.将测试探头尖端接触您想要检查的电路或部件。最好断开您正在
- 测试的部件的其中一侧, 以避免来自电路两侧的干扰。
- 4.读取显示屏中的电阻。

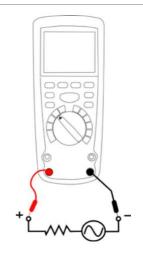

4.2.5 直流电流测量

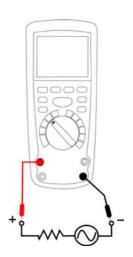

外警告

触电危险!探针尖端可能不够长,无法到达一些240 V的电器插座内的带电部件,因为触点深嵌 在插 座的深处。因此,读数可能显示为0伏,但实际上插座内有电压。在你认为没有电压之前,请确保探头 的尖端接触到插座内的金属触点。

不要测量20 A电流值超过30秒。超过30秒可能会导致设备和/或测试线的损坏。

- 1.将黑色测试线插入 COM 插孔 (负性)。
- 2.将功能开关旋转到所需的位置,并连接上红色的测试线:
 - α .对于高达 4000 μ A DC 的电流测量:将功能开关旋转到 μ A 位置, 并将红色测试线插入uA mA 插孔。
 - b.对于高达 400 mA DC 的电流测量: 将功能开关旋转到 **mA** 位置。 并将红色测试线插入µA mA 插孔。
 - c.对于高达 20 A DC 的电流测量: 将功能开关旋转到 10A 位置, 并 将红色测试线插入 10A 插孔。
- 3.按下 MODE (模式) 按钮, 将 DC 切换到显示屏上。
- 4.将被测电路的电源断开。
- 5.在你要测量电流的地方打开电路。
- 6.将黑色的测试探头尖端接触电路的负极侧,并将红色的测试探头尖端接 触电路的正极侧。
- 7.给电路供电。
- 8.读取显示屏的电流值。




4.2.6 交流电流测量(频率、占空比)

八谨慎

不要测量20 A电流值超过30秒。超过30秒可能会导致设备和/或测试线的损坏。

- 1.将黑色测试线插入 COM 插孔(负性)。
- 2.将功能开关旋转到所需的位置,并连接上红色的测试线:
 - α .对于高达 4000 μ A AC 的电流测量:将功能开关旋转到 μ A 位置, 并将红色测试线插入µA mA 插孔。
 - b.对于高达 400 mA AC 的电流测量:将功能开关旋转到 mA 位置, 并将红色测试线插入µA mA 插孔。
 - c.对于高达 20 A AC 的电流测量: 将功能开关旋转到 10A 位置, 并将红色测试线插入 10A 插孔。
- 3.按下 MODE (模式) 按钮、将 AC 切换到显示屏上。
- 4 将被测电路的电源断开。
- 5. 在你要测量电流的地方打开电路。
- 6.将黑色的测试探头尖端接触电路的中性点侧。
- 并将红色的测试探头尖端接触电路的正极侧。
- 7.给电路供电。
- 8.读取显示屏中的电流值。在 10 A AC 量程中.
- 右侧的辅助显示 屏会显示频率。
- 9.按住 **MODE (模式)** 按钮, 切换到 **Hz**。
- 10.读取显示屏中的频率。
- 11.再次按住 MODE (模式) 按钮以显示%
- 12.读取显示屏中的%占空比。
- 13.按下 EXIT (退出) 按钮, 返回电流测量
- 14.按下 **MODE (模式)** 按钮, 选择 AC。
- 15.按住 AC + DC 按钮两秒钟, 切换至 AC + DC。
- 16.测试 AC 和 DC 的真有效值。

4.2.7 导通检查

警告

为避免触电,切勿测量带有电压的电路或导线的导通性。

- 1.将功能开关旋转到♀ 位置。
- 2.将黑色的测试线插入到 COM 插孔 (负极)。将红色测试线 插入Ω插孔(正极)。
- 3.按下 **MODE (模式)** 按钮, 切换 •••) 和**2** 到显示屏上。
- 4.将测试探头尖端接触到您想要检查的电路或导线上。
- 5.如果电阻小于 35 Ω,则会发出声音信号。如果电路为断路, 则将显示 OL。

4.2.8 二极管测试

- 1.将功能开关旋转到Ω CAP → ••) 位置。
- 2.将黑色的测试线插入 COM 插孔 (负性), 将红色的测试线 插入 V 插孔 (正性)。
- 3.按下 MODE (模式) 按钮, 将 → 和 V 切换到显示屏上。
- 4.将测试探头接触被测二极管两侧的电路上。正向电压通常显示
- 为 0.400 到 0.700 V。反向电压将显示 OL。短路的二极管将

显示接近 OV, 断路的二极管将在两个极性上显示 OL。

4.2.9 电容测量

图 警告

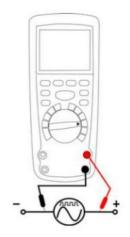
为避免触电,在进行任何电容测量之前,请断开被测设备的所有电源,并将所有电容器放电。

- 1.将功能开关旋转到 CAP 位置。
- 2.将黑色的测试线插入 COM 插孔(负极),将红色测试线插入 V 插孔 (正性)。
- 3.按下 **MODE (模式)** 按钮, 切换至 **nF**。
- 4.将测试探头接触到您所测试的电容器两侧的电路上。
- 5.读取显示屏上的电容值。

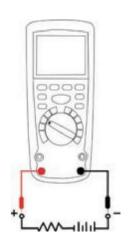
4.2.10 温度测量

- 1.将功能开关旋转到 Temp 位置
- 2.将温度探头连接到设备上的输入插孔(确保您观察到正确的极性)。
- 3.按 **MODE (模式)** 按钮可切换到 **℉ 或 ℃。**
- 4.将温度探头尖端接触到您想要测量温度的部件上。保持探头接触 被测部件,直到读数稳定(约 30 秒)。
- 5.读取显示屏上的温度值。

注: 温度探头配有 k 型 mini 连接器。该探头配有一个 mini 至 香蕉适配器,用于连接到设备上的输入插孔。



HongKe


4.2.11 频率(占空比)测量(电子)

- 1.将功能开关旋转到 Hz%的位置。
- 2.将黑色的测试线插入 COM 插孔 (负极), 并将红色的测试线
- 插入 Hz% 插孔 (正性)。
- 3.将测试探头接触到被测电路。
- 4.读取显示屏上的频率。
- 5.按 MODE (模式) 按钮以切换到%。
- 6.读取显示屏上的%占空比。

4.2.12 %4-20mA测量

- 1.将黑色的测试线插入 COM 插孔 (负极)。
- 2.将红色的测试线插入到µA mA 插孔中。
- 3.将功能开关旋转到 4-20mA%的位置。
- 4.将被测电路断开电源。
- 5.在你要测量电流的地方打开电路。
- 6.将黑色的测试探头尖端接触电路的负极侧,并将红色的测试探头
- 尖端接触电路的正极侧。
- 7.给电路供电。
- 8.环路电流将以%显示, 其中 0 mA= -25%, 4 mA=0%, 20 mA=100%, 24 mA=125%。

4.2.13 绝缘电阻的测量

测试过程中有触电的风险。在绝缘电阻测试期间,绝缘测试仪在其探头尖端上应用一个电位差 (最大 1000 V DC)。如果LOCK(锁定)功能被激活,则该电压将一直存在。

通电高压系统的绝缘测试可能会导致死亡和设备损坏。根据制造商的说明安全关闭高压系统,并 在绝 缘电阻测试前检查是否没有高压。

- 1.将功能开关旋转到INSULATION(绝缘)位置。注意显示屏左上角的电压。按下RANGE(量程)按钮. 在可用的测试电压之间进行切换,并选择适合您应用的电压量程。
- 2.将黑色的测试线连接到Insulation -(绝缘-)插孔上(负极) 并将红色的测试线连接到 Insulation +(绝缘 +)插孔上(正极)。
- 3.将两条测试线连接到您要测试的电路上。
- 4.您现在可以通过两种不同的方式继续测试:
 - a.不用LOCK(锁定)功能

i.按下并按住INSULATION TEST (绝缘测试) 按钮

- ii.如果绝缘测试检测到探头尖端之间的电位差小于30V(交流或直流). 它将:
 - 1. 当施加测试电压时,显示闪电符号
 - 2.显示绝缘电阻(兆欧)
 - 3.在显示屏的右上角显示已达到的测试电压(以VDC表示)
 - 4.使用模拟柱状图表示绝缘电阻
 - 5.频繁发出蜂鸣器警告

否则,绝缘测试仪将不会施加测试电压,并将同时显示> 30 V和一个闪烁的闪电符号, 并 发出蜂鸣器警告。

iii.松开INSULATION TEST (绝缘测试) 按钮

iv.绝缘电阻和达到的测试电压将继续显示大约20秒,尽管您可以在此期间内按下和释放 EXIT(退 出)按钮,以清除显示并将测试仪里任何剩余测试电压放电。

b.使用LOCK(锁定)功能:

- i.按下并按住LOCK(锁定)按钮两秒钟。蜂鸣器将发出两次蜂鸣声,以确认它已被激活。
- ii.按下并松开INSULATION TEST (绝缘测试) 按钮
- iii. 如果绝缘测试检测到探头尖端之间的电位差**小于30V(交流或直流)**, 它将:
 - 1. 当施加测试电压时,显示闪电符号
 - 2.显示绝缘电阻(兆欧)
 - 3.在显示屏的右上角显示已达到的测试电压(以VDC表示)
 - 4.使用模拟柱状图表示绝缘电阻
 - 5.频繁发出蜂鸣器警告
 - 否则,绝缘测试仪将不会施加测试电压,并将同时显示> 30 V和一个闪烁的闪电符号,并 发出蜂鸣器警告。
- iv.按下EXIT(退出)按钮,停止施加测试电压,将测试仪里的任何剩余测试电压放电,并显 示屏上清除绝缘电阻和已达到的测试电压。

5.旋转功能开关到OFF以退出测试。这将通过一个内部开关放电任何剩余的绝缘测试电压,这将大 约需要两秒钟。

绝缘测试的对象	备注
电动工具和小家电(带电源线的设备)	必须断开主电源,且工具/设备上的电源开关必须处于接通位置。 对于双绝缘电动工具,负极(黑色)测试线必须连接到工具的 一个 金属部分(例如:卡盘或插片)。
交流电机	如果电机已从电机端子上断开,则将一条测试线连接到电机壳体接地上,另一条测试线连接到其中一条电机导线上。如果主开关断开电机,且电机也有起动机,则您必须找到一种方法将起动机保持在接通位置。在测测带有起动机的电机时,所测量的电阻将包括电机、导线和电机与主开关之间的所有其他部件的电阻。
直流电机	要测试电刷组件、励磁线圈和电枢,请将一条测试线连接到电机壳体接地上,并将另一条测试线连接到换向器上的电刷上。 以上也适用于直流发电机组。
电缆	从电路上断开电缆。还要断开另一端, 以避免由于其他设备漏电而造 成的错误。 通过将一条测试线连接到接地和/或电缆护套,并将另一条测试线 线 依次连接到每条导线上,来检查每条导线的接地和/或电缆护套 通过将测试线连接到一对导线上,检查导线之间的绝缘电阻。

4.3 自动/手动量程选择

当绝缘测试仪首次开启时,它会自动进入自动量程状态。这将为正在进行的测量选择最佳量程, 这通 常是大多数测量的最佳模式。对于需要手动选择量程的测量情况,请执行以下操作:

- 1.按下RANGE(量程)按钮一次。AUTO显示指示将关闭。
- 2.再次按RANGE (量程) 按钮, 以查看可用的量程, 直到找到要选择的量程。
- 3.要退出手动量程模式并返回到自动量程, 请按EXIT (退出) 按钮。

注意: 手动量程不适用于温度功能。

4.4 MAX/MIN

按下MAX/MIN(最大/最小)按钮. 以激活最大/最小记录模式。MAX图标将显示在显示屏上。左侧辅助显示 屏将保持最大的读数,只有在出现新的最大值时才会更新**。MIN图标**将显示在显示屏中。右侧的辅助显示 屏将保持最小的读数,只有在出现新的最小值时才会更新。

要退出MAX/MIN模式,请按EXIT按钮。

4.5 相对模式

相对测量功能允许您相对于存储的参考值进行测量。参考的电压、电流等可以被存储,并且您可以 将测量值与参考值进行比较。所显示的值是参考值与测量值之间的差值。

注意:相对模式在4-20 mA功能中不工作。

- 1.按照相应的操作说明进行所要求的测量。
- 2.按下**REL**按钮,将读数存储在显示屏上,且**REL**指示将出现在显示屏上。
 - a.左侧的辅助显示屏将显示初始值和当前值的差距。右侧的辅助显示屏将显示初始读数。主显 示屏将显示REL测试后的读数。
- 3.按EXIT按钮退出相对模式。

4.6 显示背光

按键可打开背光灯。背光将在设置时间后自动关闭(参见第19页以了解如何更改此设置)。按下 接钮以退出背光灯打开模式。

4.7 保持

保持功能会冻结显示屏中的读数。按 HOLD (保持) 按钮以激活或退出保持功能。

4.8 峰值保持

峰值保持功能捕获峰值 AC 电压或峰值 AC 和 DC 电流。该设备可以捕获持续 1 毫秒的负或正的峰值。 按下 PEAK (峰值) 按钮, PEAK 和 MAX 将显示在左侧辅助显示屏上。MIN 将显示在右侧的辅助显示屏 上。每次出现更低的负峰值时,该设备将更新显示。按 EXIT(退出)按钮以退出峰值保持模式。

注意: 在此模式下, 自动电源关闭功能将被自动禁用。

49数据存储

STORE(存储)功能:

在您选择的测试模式时,按一次 STORE(存储)按钮,进入存储功能和进入记录间隔时间的设置。 左上角显 示 0000 S. 记录间隔时间。使用+和-按钮进行选择。这个范围为 0 到 255 秒。

当记音间隔时间设置为 0000 S 时,按 STORE(存储)按钮切换为手动记录。再次按下 STORE(存储)按钮 以进行记录。

当记音间隔时间设置为 1 到 255 秒时,按 **STORE(存储)**按钮,从 0000 开始自动记录。左上角显示记录 时间,右上角显示数据。

注意: 时间显示被限制为四位数。要退出 STORE(存储)功能,请按 EXIT 按钮。

用于存储绝缘测量值:

当记录间隔时间设置为 0000 S 时,按 STORE(存储)按钮切换为手动记录。执行绝缘测试时,按 STORE(存储)按钮以记录显示的值。

当记录间隔时间设置为 1 至 255 秒时,按 **STORE(存储)**按钮自动开始在选择的间隔时间记录显示的值。 存储的记录数量显示在左上角,数据显示在右上角。

注意:时间显示被限制为四位数。要退出 STORE(存储)功能,请按 EXIT 按钮。

4.10 数据存储召回

- 1.开启设备。
- 2.按住 STORE(存储)按钮两秒钟,即可进入 RECALL(召回)功能。左上角将显示 XXXX,这是当前存储器 的序列号。右上角将显示 XXXX,这是当前正在使用的存储量。
- 3.使用 + 和 按钮在左上角选择所需的序列号 XXXX, 并右上角的记录数据。
- 4.要退出 **RECALL(召回)**功能, 请按 **EXIT (退出)** 按钮。

4.11 清除所有数据

- 1.从 OFF (关闭) 位置, 按住 RANGE 按钮, 同时将功能开关旋转到任何位置。
- 2.松开 RANGE 按钮。 内存已被清除。

4.12 PC无线通信

- 1.安装并启动 PC 软件。
- 2.开启设备。
- 3.按住 USB 按钮 2 秒钟, 即可进入 RF 射频无线传输模式。RF 射频图标将出现在显示屏上。
- 4.通信建立后,显示屏上的 RF 射频图标会闪烁,接收器上的 LED 指示灯会闪烁。
- 5.数据将以每秒显示在 PC 屏幕上(绘制在图表上并插入数据列表中)。

6.按住 USB 按钮 2 秒钟, 即可退出射频无线传输模式。

7.有关更多详细信息,请参阅软件中的帮助文件。

4.13 发送存储的数据到PC

- 1.启动 PC 软件。
- 2.开启设备。
- 3.按住 STORE(存储)按钮 2 秒钟, 进入数据 RECALL(召回)功能。
- 4.按住 HOLD(保持)按钮两秒钟。当存储的数据被发送到 PC 时,射频传输图标将会闪烁。

注: 传输数据的时间戳是传输数据的时间,而不是捕获的时间。有关深入的软件说明,请参考软件中包含的 帮助文件。

4.14 设置

此功能允许您配置设备,并决定以下设置:

这些设置包括(按顺序排列):

- g.上限蜂鸣器报警,如果测量值大于上限,设备将发出报警 ("哔哔声")。
- b.下限蜂鸣器报警,如果测量值低于下限,设备将发出报警 ("哔哔声")。
- c. 自动断电时间
- d.关闭声音
- e.背光时间

按住 SETUP(设置)按钮两秒钟,即可进入设置菜单。屏幕将在左侧显示屏显示 SET(设置)、在主显示 屏显示 OFF (关闭)、在右侧显示屏显示 High(高)。 这是第一个可用的设置,上限蜂鸣器报警。

要更改此设置,请按 > 按钮以循环通过数字的位置。使用 + 和 - 按钮选择一个值。注意,此设置不使用小数。

按下 < 按钮以取消上限蜂鸣器 (主显示屏中显示 OFF (关闭))。

按下 SETUP (设置) 按钮以保存此设置,并移动到菜单中的下一个设置。

注意: 在最后三个设置中, 您只能使用 + 和 <按 钮来更改设置。

注意:如果您在设置过程中按下 EXIT (退出) 按钮以取消,您将退出菜单,而不保存任何更新的设置。

4 15 AC + DC

在以下任何一种测量模式中,即 V AC、mV (AC)、10 A (AC)、mA (AC)、µA (AC), 您都可以 按住 EXIT(退出)按钮两秒钟,以进入 AC + DC 测试。该程序与交流测量程序相同。显示屏将显示 AC+DC 图 标。按 EXIT (退出) 按钮以退出该模式。

4.16 电池电量不足指示

当图标中单独显示在显示屏上时,您需要更换电池。

4.17 维护

图 警告

为避免触电,在拆卸电池盖、电池和后盖之前,请断开测试线与任何电压源的连接。

为了避免触电,在后盖和电池盖安装到位并固定之前,不要操作绝缘测试仪。

如果按以下维护指引进行维护,该绝缘测试仪的设计可以让设备可靠工作多年。

- 1.保持设备干燥。如果它被弄湿了,就立即恢复干燥。
- 2.在正常温度下使用和储存该设备。极端温度会缩短电子部件的寿命,使塑料部件扭曲或熔化。
- 3.设备操作,请轻拿轻放。设备的跌落可能会损坏电子部件或外壳。
- 4.保持设备清洁。偶尔用湿布擦拭外壳。不要使用化学品、清洁溶剂或洗涤剂。
- 5.只使用推荐的尺寸和类型的新电池。移除旧的或没电的电池,使它们不会漏液和损坏设备。
- 6.如果设备要长期储存,应拆卸电池,防止损坏。

4.17.1 电池安装

- 1.关闭电源并拆下测试线。
- 2.提起支架以接近蓄电池盖。
- 3.拆卸四个螺钉(需要十字头螺丝刀)拆卸蓄电池盖。
- 4.将 6 个 AA 电池插入电池支撑架中。观察正确的极性。
- 5.将电池盖放回原位,并用螺钉固定。

注意: 如果你的绝缘测试仪不能正常工作,检查保险丝和电池,以确保它们仍然良好,并确保它 们安装 正确。

4.17.2 更换保险丝

- 1. 关闭电源并拆下测试线。
- 2.提起支架以接近蓄电池盖。
- 3.拆卸四个螺钉(需要十字头螺丝刀)拆卸蓄电池盖。
- 4.拆下 6 节 AA 电池。
- 5.拆下六个螺钉(需要十字螺丝刀)并与前盖分开,小心地拆卸后盖。注意电源线,不要拉得太用力。 现在这两个保险丝应该都很容易接触到了。
- 6.小心地拆卸旧的保险丝,并安装新的保险丝。
 - a.始终使用适当尺寸和值的保险丝(400 mA 范围[SIBA 70-172-40]0.5A/1000V 快速熔断, 20 A 范围 10 A/1000 V 快速熔断[SIBA 50-199-06])。
- 7.将后盖、 电池和电池盖放回去,用指定的螺钉固定。在重新装回后盖时,请确保不要卡住电源线。

4.18 技术规格

注: 精度规格包括两个要素:

• (%读数)-这是测量电路的精度。

• (+位)-这是模拟-数字转换器的精度。

功能	量程	分辨率	精度		
直流电压	400 mV	0.01 mV	± (0.06%读数+4位)		
	4 V	0.0001 V			
	40 V	0.001 V			
	400 V	0.01 V			
	1000 V	0.1 V	± (0.1%读数+5位)		
交流电压	50至1000 Hz				
	400 mV	0.1 mV	± (1.0%读数+7位)		
	4 V	0.001 V			
	40 V	0.01 V	± (1.0%读数+5位)		
	400 V	0.1 V			
	1000 V	1 V			
AC+DC电压	400 mV	0.1 mV	± (1.0%读数+7位)(50/60Hz)		
	4 V	0.001 V			
	40 V	0.01 V			
	400 V	0.1 V			
	1000 V	1 V			
	所有交流电压量程	所有交流电压量程都定义为从量程的5%到量程的100%。			
直流电流	400 μΑ	0.01 μΑ	± (1.0%读数+3位)		
	4000 μΑ	0.1 μΑ			
	40 mA	0.001 mA			
	400 mA	0.01 mA			
	10 A	0.001 A			
	(20 A: 最大30秒	, 精度降低)			
交流电流	50至1000 Hz				
(AC+DC)	400 μΑ	0.1 μΑ	± (1.5%读数+7位)		
	4000 µA	1 μΑ			
	40 mA	0.01 mA			
	400 mA	0.1 mA			
	10 A	0.01 A			
AC+DC电流	400 µA	0.1 μΑ	± (1.5%读数+7位)		
	4000 µA	1 μΑ			
	40 mA	0.01 mA			
	400 mA	0.1 mA			
	10 A	0.01 A			
		(20 A: 最大30秒, 精度降低)			
	所有交流电压量程	所有交流电压量程都定义为从量程的5%到量程的100%。			

注: 精度是在 65°F 到 83°F (18°C 到 28°C) 和低于 75%的 RH 条件下声明的。交流电的精度取决 于正弦波纯度。对于波峰因子小于 3.0 的其他波形, 误差通常会增加± (2%读数+ 2% 全量程)。

功能	量程	分辨率	精度
电阻	400 Ω	0.01 Ω	± (0.3%读数+9位)
	4 k Ω	0.0001 k Ω	± (0.3%读数+4位)
	40 k Ω	0.001 k Ω	
	400 k Ω	0.01 k Ω	
	4 M Ω	0.001 M Ω	-
	40 M Ω	0.001 M Ω	± (2.0%读数+ 10位)
电容	40 nF	0.001 nF	± (3.5%读数+ 40位)
	400 nF	0.01 nF	
	4 μF	0.0001 µF	± (3.5%读数+ 10位)
	40 µF	0.001 µF	
	400 µF	0.01 µF	
	4000 µF	0.1 µF	± (5.0%读数+ 10位)
	40 mF	0.001 mF	
频率	40 Hz	0.001 Hz	± (0.1%读数+1位)
(电子)	400 Hz	0.01 Hz	-
	4 kHz	0.0001 kHz	
	40 kHz	0.001 kHz	-
	400 kHz	0.01 kHz	
	4 MHz	0.0001 MHz	
	40 MHz	0.001 MHz	-
	100 MHz	0.01 MHz	未指定
	灵敏度: 最小值为0.8 V F RMS @ 20%至80%占空間		比和<100 kHz;最小值为5 V
频率(用电的)	40.00 Hz - 10 kHz	0.01 Hz - 0.001 kHz	± (0.5%读数)
,	灵敏度: 1 V RMS		
占空比	0.1至99.90%	0.01%	± (1.2%读数+2位)
	脉冲宽度: 100μs-100 ms, 频率: 5Hz至150 kHz		
温度	-50至1000°C	0.1 °C 0.1 °F	± (1.0%读数+ 2.5 °C) ± (1.0%读
(K型)	- 58至1832 °F		数+ 4.5 °F)
4-20 mA%	-25至125%	0.1 °F	± 50位
	0 mA = -25%, 4 mA = 0%, 20 mA = 100%, 24 mA = 125%		

兆欧表格

终端电压	量程	分辨率	精度	测试电流	短路电流
125 V	0.125 4.000 MΩ	0.001 M Ω	± (2% + 10)	1 mA @负载125	≤ 1 mA
(0%至+10%)	4.001至40.00 MΩ	0.01 M Ω	± (2% + 10)	- k Ω	
	40.01至400.0 MΩ	0.1 Μ Ω	± (4% + 5)	-	
	400.1至4000 MΩ	1 Μ Ω	± (5% + 5)	-	
250 V	0.250至4.000 MΩ	0.001 M Ω	± (2% + 10)	1 mA @负载250	≤ 1 mA
(0%至+0%)	4.001至40.00 M Ω	0.01 M Ω	± (2% + 10)	- k Ω	
	40.01至400.0 MΩ	0.1 Μ Ω	± (3% + 5)		
	400.1至4.000 M Ω	1 Μ Ω	± (4% + 5)		
500 V	0.500至4.000 MΩ	0.001 M Ω	± (2% + 10)	1 mA @负载500	≤ 1 mA
(0%至+10%)	4.001至40.00 M Ω	0.01 M Ω	± (2% + 10)	- k Ω	
	40.01至400.0 MΩ	0.1 Μ Ω	± (2% + 5)		
	400.1至4000 MΩ	1 Μ Ω	± (4% + 5)		
1000V	1.000 至4.000 MΩ	0.001 M Ω	± (3% + 10)	1 mA @负载1 M	≤ 1 mA
(0%至+10%)	4.001至40.00 M Ω	0.01 M Ω	± (2% + 10)	7 32	
	40.01至400.0 MΩ	0.1 Μ Ω	± (2% + 5)		
	400.1至4000 M Ω	1 Μ Ω	± (4% + 5)		

规格	
存储容量	2000个测量
外壳	双模, IP67防水
冲击 (跌落测试)	6.5英尺(2米)
二极管测试	测试电流最大0.9 mA,开路电压2.8 V DC 典型
导通检查	如果电阻小于35 Ω(大约),蜂鸣器会响,测试电流< 0.35 mA。
峰值	捕获峰值>1 ms
温度传感器	需要K型热电偶
输入阻抗	>10 M Ω V DC 和>9 M Ω V AC
AC响应	真有效值
AC真有效值(真均方根值)	该术语代表"均方根",表示对电压或电流值的计算方法。平均响应万用表被校准来仅正确读取正弦波,它们在非正弦波或失真信号上读取不准确。真均方根测试仪能准确地读取这两种类型的信号。
AC电压带宽	50 Hz至1000 Hz
波峰因子	≤3在全量程至500 V, 在1000 V时线性下降到≤1.5。
显示	40,000计数背光液晶带柱状图
超出量程指示	显示"OL"
自动断电	15分钟(大约) ,具有禁用功能
极性	自动(正性无指示) ; 负 (-) 标志表示负极
测量速率	每秒2次,标称值
电池电量不足指示	- 如果电池电压降至工作电压以下时,将显示 ¹ 。
电池	6个AA电池
保险丝	mA, μA量程; 0.5 A/1000 V陶瓷快速
安全	请参阅《PicoScope 4225A和4425A安全指引》关于本产品的完整安全信息。

