压电式喷油嘴-VAG PD单体泵(电流)

这个测试的目的是评估VAG PD单体泵喷油嘴(压电式)在不同工况下的工作状况。

如何进行测试

●喷油嘴的线束可以在汽缸盖后部的多插头附近接触到。可能需要松开多插头的锁销来拆下多插头,并小心剥开绝缘套,露出足够的线缆来作连接。测试结束后,装好多插头并修理好绝缘套。
●连接小电流钳(0至60安培)到示波器A通道,将电流钳钳口夹在喷油嘴的其中—条线上。如有必要,请查阅厂家的线路图。
●确定电流钳已开启,并选择了20A量程。在连接电流钳到被测电路之前,按下“归零”(zero)按钮。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击“开始”,开始观察实时数据。
●起动发动机,怠速运行。
●踩下油门踏板,在急速、加速和超速工况下分别捕获喷油嘴电流波形。
●采集到波形后,“停止”示波器运行。
●关闭发动机。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

请注意:
这个波形被设置为自动触发模式,上升沿触发。如果波形开始不是一个正向的脉冲,那么电流钳的连接方向接反了。取下电流钳,然后将它面向正的方向连接。

示例波形

怠速时的喷油嘴波形

高速时的喷油嘴波形

超速时的喷油嘴波形

波形注意点

这些示例波形显示在不同工作状况下的喷油嘴电流。
示例波形1:第一个喷射阶段是预喷射,第二个是主喷射。
示例波形2:当发动机转速上升,控制模块增加主喷射的持续时间。
示例波形3:超速状态时,只保持预喷射阶段。

波形库

波形库添加通道的下拉菜单中选择injector current。

更多信息

这压电机械式喷油嘴被安装在汽缸盖内,线缆通过缸盖后部的环形多插头连接到各个喷油嘴上。这些喷油嘴与共轨喷油嘴不一样,它的燃油高压由一个额外的凸轮轴驱动摇臂产生,并直接作用在喷油嘴上,因此不需要高压燃油泵。这些喷油嘴的工作压力范围很大,从130至2,200 bar。

这个系统被大众奥迪集团称为泵喷嘴(PD)。

可能多达五个喷射阶段:
●预喷射阶段(0至2):为了通过柔和开始燃烧来防止柴油爆震。
●主喷射阶段(1):为动力和扭矩特性。
●二次喷射(0至2):为了在柴油微粒再生期间增加燃烧温度。

压电喷油嘴相对传统的电磁喷油嘴的优势是拥有非常快速的反应时间——一些快四倍。

压电喷油嘴包含有一叠约300片极薄的陶瓷板。施加开启电压时,陶瓷板扩张,作用在喷油嘴针阀上,从而打开针阀,喷射燃油到汽缸里。

图3显示一个压电元件在它的两个不同状态下。插图1显示没有电压供应时的压电元件堆,插图2显示当接通供应电压时压电元件堆的高度增加。

一旦压电元件堆在喷油嘴的开启位置,它不需要继续供应电压且将会保持在开启状态,直到收到关闭指令。”开启”和”关闭”指令是波形里的正向和负向的电流峰值。由于这个原因,绝不要在发动机运行时断开喷油嘴多插头。如果喷油嘴在开启状态,它会用柴油液压锁住发动机。发动机会熄火,如果控制模块检测到喷油嘴或驱动电路有任何故障。

这个喷油嘴来自带有压电喷油嘴的2.0升PD大众奥迪集团发动机。其它发动机安装的机电式喷油嘴,在另一主题里描述过。

图2-安装在气缸盖上的压电喷油嘴

图3

诊断故障代码

相关故障代码:
P0251
P0252
P0253
P0254
P0255

P0256
P0257
P0258
P0259
P0260

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。


次级点火电压(使用点火延长线)和放大器数字开关信号

这个测试的目的是验证次级点火电压信号与数字触发信号之间的关系。

观看使用点火延长线进行次级电压测试视频。

如何进行测试

A通道-次级点火电压(使用点火延长线)

●对于配置每缸一个线圈(CPC)点火系统的发动机,点火线圈直接安装在火花塞顶部,这让监测次级高压电路的性能成为不可能。
●为了克服这个问题,拆卸连接所有线圈的多插头,然后一次拆下一个线圈,或者对于盒式线圈组的一起拆下。然后用独立点火线圈延长线(TA037)连接在点火线圈和火花塞之间。再重新接上线圈的多插头,如有必要请在线圈组和发动机接地之间连接一条额外的接地线(遵照TAO37测试线附带的说明书)。
●连接一条次级点火拾取线到示波器A通道
●将次级点火拾取线的高压夹子夹在点火延长线上,接地夹子连接到适当的接地上。

B通道-数字开关信号

●连接一条BNC测试线到示波器B通道,连接一个后背刺针到测试线彩色接头(正极)上,再用刺针背刺点火线圈的数字开关信号线,负极搭铁。
●可能有必要查阅厂家的数据。连接示意图见Figure 1
●要检测每个线圈,依次连接高压拾取线和刺针到每个线圈上。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击”开始”,开始观察实时读数。
●采集到波形后,“停止”示波器运行。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

请注意:
从破损的高压线上连接或移除次级点火拾取线,存在电击的危险。为了避免这种风险,请在点火关闭后连接和移除次级点火拾取线。

示例波形

波形注意点

上面波形显示通道A(蓝色波形)的次级高压信号与数字触发信号(红色波形)之间的关系。当触发信号走高,线圈初级电路闭合,导致电流从蓄电池流经它。在闭合时间终点,触发信号返回到低点,断开初级电路并导致次级绕组产生一个高压电压。

更多信息

上面显示的是两个波形,接下来会对这两个波形分别解释。

数字开关信号(红色波形)

这个低压信号在0伏与4伏之间切换。当触发信号达到4伏,线圈通电且”通磁”或闭合时间开始。当电压返回到0,线圈的初级绕组的电流被切断,铁芯的磁通量突然降低,在次级里感应—个电压,并产生高强度的电压。

线圈的通电与断电时间由汽车的电子控制模块(ECM)控制。电子点火发动机的闭合时间由放大器或ECM里的限电流电路控制。

在恒定能量系统,闭合时间是固定的,与发动机转速无关。这允许线圈完全通磁,并且使磁通量达到最大强度。闭合角度相对于一个完整的360°发动机循环测量,随着发动机转速增加而增加。

次级高压波形(蓝色波形)

配置每缸一个线圈(CPC)点火的现代发动机管理系统具有恒定能量电子点火系统的所有优点,但是额外的好处是没有了分电器盖、线圈线、转子臂和火花塞线。由潮湿和滑轨引起的可靠性问题几乎没有了。

不像传统的无分电器点火系统(DIS)那样,火花塞由负极和正极电压点火;CPC的火花塞只由负极电压点火,这提高了火花塞的寿命和延长了火花塞的服务寿命。

线圈初级绕组里面是次级绕组。此绕组围绕着一个多层铁芯,大约有20000到30000匝。一端连接在初级端子上,另一端连在线圈塔上。高强度电压由初级绕组和次级绕组的相互感应产生,中间柔软的铁芯增强了它们之间的磁场。

在火花塞上测量的电压是在变化的条件下击穿火花塞间隙所需的电压。这个电压受以下的任一因素影响:
●火花塞间隙尺寸:大间隙会增加kV
●磨损的火花塞:表面磨损会增加火花塞kV。
●发动机压缩:低的压缩降低火花塞kV。
●发动机供油:浓混合降低火花塞kV。
●短路到接地:降低火花塞kV
●脏的火花塞:降低火花塞点火电压

针脚数据

我们的示例波形来自于大众的Polo,它线圈的四个针脚如下图所示:

●针脚1:接地
●针脚2:安全接地
●针脚3:ECM数字开关信号
●针脚4:电源电压

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

FlexRay总线

这个测试的目的是验证FlexRay总线信号的镜像特性和边缘的一致性。

如何进行测试

●对于像用在FlexRay网络上的高速信号,你必须使用高速探头(图1),这包含在高级套装里。BNC至4mm线缆是用于普通的信号,不适合于这个测试。
●连接一个高速探头到示波器A通道,连接另一个高速探头到示波器B通道
●在FlexRay网络易连接的地方找到FlexRay高电平和FlexRay低电平的针脚(通常在网络上的每个ECU的多路接头上)。
●小心地背刺多路接头,A通道连接FlexRay高电平,B通道连接FlexRay低电平,将每个探头的接地夹子连接到底盘的良好接地点上。
●最小化此帮助页面,您会看到 PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击“开始”,开始观察实时读数。
●采集到波形后,“停止”示波器运行。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

图1

示例波形

波形注意点

上面的FlexRay波形是FlexRay信息的细节放大图,可以观察到每个状态的变化。这可以验证信号的镜像特性和边缘的一致性。

在这里我们可以清晰地看到两个信号相等且方向相反.它们的振幅一样。它们的边缘干净且互相一致。这表示该FlexRay网络的节点和FlexRay控制单元之间通讯正常。这个测试有效地验证了FlexRay网络的这一个节点的完好性;如果某个ECU(节点)没有正确的回应,故障很可能是ECU本身。总线的其余部分应该工作正常。

有必要对FlexRay网络上的每个ECU接头的信号进行状态检查,作为最终的核查。每个节点的同一总线的数据都是一样的。记住:网络上很多数据都是极其关乎安全的,所以不要使用刺针刺破FlexRay线缆的绝缘层!

更多信息

FlexRay是一个快速的、确定性的和容错的汽车总线。

FlexRay协议满足了对快速的、确定性的和容错的通讯技术的需求。特地为车身网络设计,FlexRay不会取代现有的网络而是与已经架设好的网络一起工作如控制器局域网路(CAN)、本地内部通讯网络(LIN)和面向媒体的系统传输(MOST)。

带有FlexRay服务的车身网络作为一个主干网,为发动机控制提供决定和为线控转向、线控制动以及其它高级的安全应用提供容错。

在FlexRay里,循环周期被分为两个部分:一个是静态的,用于对时间苛刻的信息;另一个是动态的,用于没那么重要的信息。静态的部分是由时间触发的,动态的部分是事件触发的。例如,一个传送信息给刹车的节点会在静态部分里,而传送信息给音频系统的节点会在动态部分里。

FlexRay—与CAN相比,它提供一个明显更大的10 Mbit/s的带宽。

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

LIN总线-发动机熄火时测试

这个测试的目的是验证LIN总线信号是否存在和是否正确,正常的LIN信号波形应该没有明显的变形和噪音。

如何进行测试

●连接一条BNC测试线到示波器A通道,将测试线的彩色接头(正极)接到车辆插头里面的LIN总线数据信号端子上。
●测试线的黑色接头连接到蓄电池负极或良好的底盘接地上。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形
●点击”开始”,开始观察实时读数。
●采集到波形后,“停止”示波器运行。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

示例波形

波形注意点

如上面示例波形所见,LIN总线波形是一个方波,代表着串行数据流里的二进制状态。所见的波形应该没有明显的变形和噪音毛刺,且高电平和低电平应该与示例波形的近似(对于12V的系统)。

低电平(逻辑0)应该少于20%的蓄电池电压(通常1V),且高电平(逻辑1))应该多于80%的蓄电池电压。注意:发动机起动时这电压水平会有微小的变化。

我们利用示波器不能够对这数据流进行译码,所以这个测试的目的是验证信号是否存在和是否正确,并且移动线束或者轻轻拉扯插头时信号不会中断。故障可能会特定于某个功能,例如车窗不能动作,或者通常是总线上的所有功能都不工作。认为是部件故障前,使用示波器来检查部件有没有电源和接地,以及LIN信号是否存在且是否正确。

更多信息

本地内部通讯网络(LIN bus)在装备有现代CAN总线的车辆上变得更加普遍。它本质上是一个低速的、单线的串行数据总线(更快和更复杂的CAN总线的附属总线),被用来控制车辆上低速的非安全关键性的”管家”功能,特别是车窗、车镜、门锁、空调系统和电子座椅。

LIN总线因为它的低成本且它可以减少CAN网络的负荷,而被广泛地使用。

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

无分电器点火系统(正极点火)-次级电压

这个测试的目的是通过观察次级点火电压波形评估无分电器点火系统(正极点火)的工作状况。

如何进行测试

●关闭发动机。
●连接一条次级点火拾取线到示波器A通道
●将次级点火拾取线的高压夹子夹在发动机的其中一条火花塞上,接地夹子连接到适当的接地上,如图1所示。
●所有独立点火系统的火花塞都是负极点火的,而在无分电器点火系统(DIS)上你需要识别正极点火和负极点火的火花塞。如果实时波形没有显示或颠倒了,是因为你选择了负极点火的火花塞。要么选择另一条火花塞线来测量或者从下拉菜单里加载负极点火的次级波形。
●起动发动机。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击“开始”,开始观察实时读数。
●采集到波形后,“停止”示波器运行。
●关闭发动机和点火开关。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

图1

请注意:
从破损的高压线上连接或移除次级点火拾取线,存在电击的危险。为了避免这种风险,请在点火关闭后连接和移除次级点火拾取线。

示例波形

波形注意点

观察无分电器点火系统(DIS)或独立点火系统的火花KV,它的波形应该是正向显示的而不是反向的;如果反向显示,说明从菜单里选择了错误的极性,或者DIS的则选择了错误的火花塞线。发动机运行时火花塞电压不断波动,导致波形上下移动。要知道火花塞的最高电压,请看屏幕底部的”通道A:最大值(kv)”读数。

踩下油门并观察发动机在有负荷情况下的电压变化。只有这样火花塞才会被置于各种压力下,才能有效地评估他们在行驶时是如何工作的。

紧接着触发点的这部分波形,大约-1.3 KV被称为燃烧电压。这是火花击穿空气间隙后保持火花塞点火所需的电压。这个电压与次级电路的阻抗成比例。示例里的火花持续了约1.4ms。这就是火花持续时间,即火花在火花塞间隙里活动的时间长度。

可以从主菜单里选择”次级-分电器系统线圈(或火花塞)线”,在它的帮助文件里查看更多次级波形信息。

更多信息

次级线圈绕组位于初级线圈绕组内部。此绕组围绕着一个多层铁芯,大约有20,000到30,000匝。一端连接在初级端子上,另一端连在线圈塔上。

高强度电压由初级绕组和次级绕组的相互感应产生。中间柔软的铁芯增强了它们之间的磁场。

在火花塞上测量的电压是在变化的条件下击穿火花塞间隙所需的电压,且此电压取决于以下的任一或所有因素:

老式发动机对火花塞千伏(KV)的要求比现代发动机要低,因为现代发动机被设计在更高的压缩比、更稀的空气/燃油混合比和更大的火花塞间隙下运行。

装有无分电器点火系统(DIS)的现代发动机具有恒定能量电子点火系统的所有优处,但是额外的好处是没有了分电器盖、线圈钱和转子臂。由潮湿和滑轨引起的可靠性问题几乎没有了。

图2

DIS有其自身的缺陷,一半的火花塞以正常的负极电压点火的同时,另一半火花塞以不可接受的正极电压点火。这会导致正极点火火花塞有明显的磨损。

这种系统每转一圈点火一次,代替每隔一圈点火一次,这就是大家熟知的无效火花点火系统。这不等于火花塞的磨损率比平常的大一倍,因为无效火花发生在排气冲程,此时是没有压缩的。如果几千英里后拆下火花塞检查,会发现两组火花塞的电极相对变成方形,同时正极点火的火花塞有明显的磨损。

图2显示一个无效火花线圈示例。

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

无分电器点火系统(负极点火)-次级电压

这个测试的目的是通过观察次级点火电压波形评估无分电器点火系统(负极点火)的工作状况。

观看无分电器点火系统(负极点火)-次级电压测试视频。

如何进行测试

●关闭发动机。
●连接一条次级点火拾取线到示波器A通道
●将次级点火拾取线的高压夹子夹在发动机的其中—条火花塞上,接地夹子连接到适当的接地上,如图1所示。
●如果是连接到独立点火系统,需要在火花塞和线圈之间连接─条高压延长线,然后将点火拾取线连接到这条延长线上。
●所有独立点火系统的火花塞都是负极点火的,而在无分电器点火系统(DIS)上你需要识别正极点火和负极点火的火花塞。如果在观察实时读数时波形没有显示或颠倒了,是因为你错误地选择了正极点火的火花塞,所以请选择另一条火花塞线来测量或者从下拉菜单里加载正极点火的次级波形。
●起动发动机
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击“开始”,开始观察实时读数。
●采集到波形后,“停止”示波器运行。
●关闭发动机和点火开关。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

图1

请注意:
从破损的高压线上连接或移除次级点火拾取线,存在电击的危险。为了避免这种风险,请在点火关闭后连接和移除次级点火拾取线。

示例波形

波形注意点

观察无分电器点火系统(DIS)或独立点火系统的火花KV,它的波形应该是正向显示的而不是反向的;如果反向显示,说明从菜单里选择了错误的极性,或者DIS的则选择了错误的火花塞线。发动机运行时火花塞电压不断波动,导致波形上下移动。要知道火花塞的最高电压,请看屏幕底部的”通道A:最大值(Kv)”读数。

踩下油门并观察发动机在有负荷情况下的电压变化。只有这样火花塞才会被置于各种压力下,才能有效地评估他们在行驶时是如何工作的。

紧接着触发点的这部分波形,大约1.3 kV被称为燃烧电压。这是火花击穿空气间隙后保持火花塞点火所需的电压。这个电压与次级电路的阻抗成比例。示例里的火花持续了约1.4ms。这就是火花持续时间,即火花在火花塞间隙里活动的时间长度。

可以从主菜单里选择”次级-分电器系统线圈(或火花塞)线”,在它的帮助文件里查看更多次级波形信息。

更多信息

次级线圈绕组位于初级线圈绕组内部。此绕组围绕着一个多层铁芯,大约有20,000到30,000匝。一端连接在初级端子上,另一端连在线圈塔上。

高强度电压由初级绕组和次级绕组的相互感应产生。中间柔软的铁芯增强了它们之间的磁场。

在火花塞上测量的电压是在变化的条件下击穿火花塞间隙所需的电压,且此电压取决于以下的任一或所有因素:

老式发动机对火花塞千伏(kV)的要求比现代发动机要低,因为现代发动机被设计在更高的压缩比、更稀的空气/燃油混合比和更大的火花塞间隙下运行。

装有无分电器点火系统(DIS)的现代发动机具有恒定能量电子点火系统的所有优处,但是额外的好处是没有了分电器盖、线圈线和转子臂。由潮湿和滑轨引起的可靠性问题几乎没有了。

图2

DIS有其自身的缺陷,一半的火花塞以正常的负极电压点火的同时,另一半火花塞以不可接受的正极电压点火。这会导致正极点火火花塞有明显的磨损.

这种系统每转一圈点火一次,代替每隔一圈点火一次,这就是大家熟知的无效火花点火系统。这不等于火花塞的磨损率比平常的大一倍,因为无效火花发生在排气冲程,此时是没有压缩的。如果几千英里后拆下火花塞检查,会发现两组火花塞的电极相对变成方形,同时正极点火的火花塞有明显的磨损。

图2显示一个无效火花线圈示例。

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

独立点火-初级电压vs次级电压和电流

这个测试的目的是通过分析初级点火电压、次级点火电压和点火电流波形评估COP独立点火系统的工作状况。这些信号波河以揭示闭合角、击穿电压、燃烧时间和线圈振荡。

如何进行测试

●连接一个10:1衰减器到示波器A通道,然后取出一条BNC测试线连接到衰减器上。
●接着连接一个后背刺针到测试线彩色接头(正极)上,用刺针背刺点火线圈的负极(通常是接线柱CB、T1或-),测试线黑色接头搭铁。
●也可以断开COP单元的连接器,使用6-路通用引线连接多插头连接器分开的两半,如图1所示。您需要识别通用引线的哪─条线缆携带着COP初级点火信号,将测试线连接到引线上。
●连接一条cOP独立点火探头到示波器B通道,将探头的末端放在线圈上,并将探头的接地夹子搭铁。
●将探头的末端放在线圈上时,确保你使用的是它的平面。尽量让探头在线圈上的放置位置保持一致:在第一个线圈上找到测试信号最好的位置,然后在其它线圈上重复这个位置。
●连接小电流钳(0至60安培)到示波器C通道,将电流钳钳口夹在线圈的电源线上,而不是夹在也包含负极导线的线束上(有些点火系统的线束包含几条负极导线)。
●确定电流钳已开启,并选择了20A量程。在连接电流钳到被测电路之前,按下“归零”(zero)按钮。
●起动发动机,怠速运行。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击“开始”,开始观察实时读数。
●采集到波形后,“停止”示波器运行。
●关闭发动机和点火开关。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

请注意:
示例波形显示测试过程中的电压相当高,因此需要调节适当的示波器量程。当测量电压超过200伏的情况,一定要使用10:1衰减器,这很重要。电流钳需要面对正确的方向,钳口上有一个箭头,错误的连接会导致反向的波形图。

示例波形

波形注意点

关于初级点火电压、次级点火电压和点火电流信号波形的分析,请阅读以下引导测试主题:
初级点火电压(使用10:1衰减器)
●次级点火电压(使用COP独立点火探头)
●点火电流(使用电流钳)

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

独立点火-初级电压vs次级电压

这个测试的目的是通过分析初级和次级点火电压波形评估COP独立点火系统的工作状况。初级和次级点火电压波E可以揭示闭合角、击穿电压、燃烧时间和线圈振荡。

如何进行测试

●连接一个10:1衰减器示波器A通道,然后取出—条BNC测试线连接到衰减器上。
●接着连接一个后背刺针到测试线彩色接头(正极)上,用刺针背刺点火线圈的负极(通常是接线柱CB、T1或-),测试线黑色接头搭铁。
●也可以断开COP单元的连接器,使用6-路通用引线连接多插头连接器分开的两半,如图1所示。您需要识别通用引线的哪─条线缆携带着COP初级点火信号,将测试线连接到引线上。
●连接一条COP独立点火探头到示波器B通道,将探头的末端放在线圈上,并将探头的接地夹子搭铁。
●将探头的末端放在线圈上时,确保你使用的是它的平面。尽量让探头在线圈上的放置位置保持一致:在第一个线圈上找到测试信号最好的位置,然后在其它线圈上重复这个位置。
●起动发动机,怠速运行。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击“开始”,开始观察实时读数。
●采集到波形后,“停止”示波器运行。
●关闭发动机和点火开关。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

请注意:
示例波形显示测试过程中的电压相当高,因此需要调节适当的示波器量程。当测量电压超过200伏的情况,一定要使用10:1衰减器,这很重要。

示例波形

波形注意点

关于初级点火电压和次级点火电压信号波形的分析,请阅读以下引导测试主题:
初级点火电压(使用10:1衰减器)
●次级点火电压(使用COP独立点火探头)

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

分电器分缸高压线次级电压

这个测试的目的是通过分析某一条分缸高压线的电压波形评估对应气缸点火系统的工作状况。

如何进行测试

●关闭发动机。
●连接一条次级点火拾取线到示波器A通道
●将次级点火拾取线的高压夹子夹在分电器其中一条分缸高压线上,接地夹子连接到适当的接地上。
●起动发动机,怠速运行。
●最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击“开始”,开始观察实时读数。
●采集到波形后,“停止”示波器运行。
●关闭发动机和点火开关。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

请注意:
从破损的高压线上连接或移除次级点火拾取线,存在电击的危险。为了避免这种风险,请在点火关闭后连接和移除次级点火拾取线。

示例波形

波形注意点

这个波形有以下特征:

●初级点火电路未接通时,A通道显示次级点火电压在0kV左右。
●初级点火电路接通时,次级点火电压发生变化,下降到-1kV左右,并且有短暂的振荡。
●当初级点火电路触点断电时,感应出次级点火电压尖峰,大约8 kV。
●次级电压接着下降到0.8kV左右,并保持这个电压值大约2ms(燃烧持续时间)。
●在燃烧未尾时刻,次级电压突然上升了0.5KV。接着能量以振荡形式耗散,至少有3到5个振荡循环波形,最后回到0kV附近。
●次级电压回到ОkV附近,说明燃烧结束。

波形库

波形库添加通道的下拉菜单中选择Distributor ignition secondary voltage (plug lead)。

更多信息

次级线圈绕组位于初级线圈绕组内部。此绕组围绕着一个多层铁芯,大约有20,000 到30,000匝。一端连接在初级端子上,另一端连在线圈塔上。

高强度电压由初级绕组和次级绕组的相互感应产生。中间柔软的铁芯增强了它们之间的磁场。

在分电器系统中,线圈产生的次级高压电压通过分电器盖内的触点分配给适当的火花塞。

在火花塞上测量的电压是在变化的条件下击穿火花塞间隙所需的电压,且此电压取决于以下的任一因素:

●火花塞间隙大
●火花塞间隙小
●转子空气间隙大
●缸压低
●火花塞线破裂
●浓混合物
●线圈线破裂
●点火正时错误
●火花塞磨损
●短路到接地
●稀混合物
●火花塞脏
●转子与分电极不对齐

老式发动机对火花塞千伏(k)的要求比现代发动机要低,因为现代发动机被设计在更高的压缩比、更稀的空气V/燃油混合比和更大的火花塞间隙下运行。

装有无分电器点火系统(DIS)的现代发动机具有恒定能量电子点火系统的所有优处,但是额外的好处是没有了分电器盖、线圈线和转子臂。由潮湿和滑轨引起的可靠性问题几乎没有了。

DIS有其自身的缺陷,一半的火花塞以正常的负极电压点火的同时,另一半火花塞以不可接受的正极电压点火。这会导致正极点火火花塞有明显的磨损。

这种系统由于它本身的特性,每转一圈点火一次,代替每隔一圈点火一次,这就是大家熟知的无效火花点火系统。这不等于火花塞的磨损率比平常的大一倍,因为无效火花发生在排气冲程,此时是没有压缩的。如果几千英里后拆下火花塞检查,会发现两组火花塞的电极相对变成方形,同时正极点火的火花塞有明显的磨损。

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

分电器中央高压线次级电压

这个测试的目的是通过分析中央高压线的电压波形评估分电器式次级点火系统的工作状况。

如何进行测试

●关闭发动机。
●连接一条次级点火拾取线到示波器A通道
●将次级点火拾取线的高压夹子夹在分电器中央高压线上,接地夹子连接到适当的接地上。
●起动发动机,怠速运行。
●最小化此帮助页面,您会看到 PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
●点击”开始”,开始观察实时读数。
●采集到波形后,“停止”示波器运行。
●关闭发动机和点火开关。
●使用波形缓冲区、放大以及测量等工具来观察和分析波形。

请注意:
从破损的高压线上连接或移除次级点火拾取线,存在电击的危险。为了避免这种风险,请在点火关闭后连接和移除次级点火拾取线。

示例波形

波形注意点

这个波形有以下特征:

●初级点火电路未接通时,A通道显示次级点火电压在0kV左右。
●初级点火电路接通时,次级点火电压发生变化,下降到-3kV左右,并且有短暂的振荡。
●当初级点火电路触点断电时,感应出次级点火电压尖峰,超过40 kV。
●次级电压接着下降到2kV左右,并保持这个电压值大约2ms(燃烧持续时间)。
●在燃烧未尾时刻,次级电压突然上升了1-2kV。接着能量以振荡形式耗散,至少有3到5个振荡循环波形,最后回到0kV附近。
●次级电压回到0kV附近,说明燃烧结束。

波形库

波形库添加通道的下拉菜单中选择lgnition coil secondary voltage。

更多信息

次级线圈绕组位于初级线圈绕组内部。此绕组围绕着一个多层铁芯,大约有20,000到30,000匝。一端连接在初级端子上,另一端连在线圈塔上。
高强度电压由初级绕组和次级绕组的相互感应产生。中间柔软的铁芯增强了它们之间的磁场。
在分电器系统中,线圈产生的次级高压电压通过分电器盖内的触点分配给适当的火花塞。
在火花塞上测量的电压是在变化的条件下击穿火花塞间隙所需的电压,且此电压取决于以下的任一因素:

●火花塞间隙大
●火花塞间隙小
●转子空气间隙大
●缸压低
●火花塞线破裂
●浓混合物
●线圈线破裂
●点火正时错误
●火花塞磨损
●短路到接地
●稀混合物
●火花塞脏
●转子与分电极不对齐

老式发动机对火花塞千伏(KV)的要求比现代发动机l要低,因为现代发动机被设计在更高的压缩比、更稀的空气/燃油混合比和更大的火花塞间隙下运行。

装有无分电器点火系统(DIS)的现代发动机具有恒定能量电子点火系统的所有优处,但是额外的好处是没有了分电器盖、线圈线和转子臂。由潮湿和滑轨引起的可靠性问题几乎没有了。

DIS有其自身的缺陷,一半的火花塞以正常的负极电压点火的同时,另一半火花塞以不可接受的正极电压点火。这会导致正极点火火花塞有明显的磨损。

这种系统由于它本身的特性,每转一圈点火一次,代替每隔一圈点火一次,这就是大家熟知的无效火花点火系统。这不等于火花塞的磨损率比平常的大一倍,因为无效火花发生在排气冲程,此时是没有压缩的。如果几千英里后拆下火花塞检查,会发现两组火花塞的电极相对变成方形,同时正极点火的火花塞有明显的磨损。

免责说明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。