虹科案例 | 发动机点火正时故障

故障现象

有车主反映,他的车加速无力,疑似发动机点火有故障,接上解码器读取车辆故障码,车辆报故障【P001600:气缸列1,凸轮轴/曲轴位置传感器错误的配置】

故障诊断

 接上示波器,检测车况正常的同款车型的凸轮轴/曲轴位置传感器以及点火触发的信号:

再检测故障车辆的凸轮轴/曲轴位置传感器以及点火触发的信号:

波形图一对比,故障原因就很明显可以看出了:故障车辆的正时信号波形和正常车辆的波形有明显的偏差,可以断定是发动机曲轴和凸轮轴的相对位置不对应。

故障排除

    检查发动机的曲轴和凸轮轴相关零部件,原来是凸轮轴齿轮装配松动从而导致正时故障。

    对于车辆的信号波形,我们鼓励用户,遇到任何车,都采集下来保存,以后再碰到同样的车,就能很直观的对比出故障原因了。

加入直播交流群,以技会友

加入直播交流群,以技会友

虹科案例 | 2014款大众帕萨特车发动机怠速间歇抖动

故障现象

    一辆2014款大众帕萨特车,搭载CEA发动机,累计行驶里程约为15.6万km。该车因发动机怠速间歇抖动、发动机故障灯异常点亮的故障在其他维修厂维修,维修人员用故障检测仪检测,读得故障代码“P0302 气缸2:检测到失火”,于是调换了气缸2的火花塞和点火线圈,故障依旧;用气缸压力表测量4个气缸的压力,均约为11 bar(1 bar=100 kPa),正常;接着又调换了气缸2的喷油器,故障依旧,于是向笔者请求技术支持。

故障诊断

    接车后试车,起动发动机,发动机怠速间歇抖动,同时发动机故障灯和EPC故障灯同时异常点亮。用故障检测仪检测,发动机控制单元中存储有3个故障代码,分别为“P0300 检测到失火”“P0302 气缸2:检测到失火”“P130A 气缸压缩比”;读取怠速时的发动机失火数据,发现气缸2的失火计数在不断增加,推断气缸2存在失火故障。使用pico示波器和压力传感器WPS500X同时测量发动机怠速时的排气脉动及气缸1点火信号(图1),发现气缸2排气门打开时产生的压力脉动偶尔异常,确认气缸2间歇失火,分析可能的故障原因有:点火能量间歇不足;喷油脉宽或喷油时刻间歇异常;气缸压力间歇不足。

图1 发动机怠速时的排气脉动及气缸1点火信号

    进行相对压缩测试(脱开喷油器导线连接器,只让起动机带动曲轴旋转,各气缸并不工作,同时测量起动电流),测得的起动电流波形如图2所示,可知有1个气缸的压缩压力间歇不足(对应的起动电流偶尔偏低)。

图2 故障车起动电流波形

    用压力传感器WPS500X测量起动时气缸1的压力波形(图3),可知波峰压力比较稳定,约为11 bar,正常;测量起动时气缸2的压力波形(图4),发现波峰压力波动明显,先从11 bar左右逐渐降低至9 bar左右,再逐渐升高,异常。诊断至此,推断气缸2间歇密封不良。

图3 起动时气缸1的压力波形

图4 起动时气缸2的压力波形

    同时测量起动时(脱开喷油器导线连接器,只让起动机带动曲轴旋转,各气缸并不会工作)的进气脉动、排气脉动和起动电流波形(图5),借助WOT(Waveform Overlay Tool,波形叠加工具,输入点火顺序可以生成发动机工作循环图,红色区域为做功行程,灰色区域为排气行程,蓝色区域为进气行程,黄色区域为压缩行程)进行分析,发现气缸2压缩行程对应的进气脉动异常,由此推断气缸2的进气门间歇密封不良。

图5 起动时的进气脉动、排气脉动和起动电流波形

    拆下气门室盖,检查发现气缸2的进气门摇臂轴承及凸轮磨损异常(图6)。

图6 进气门摇臂轴承及凸轮磨损异常

故障排除

    更换进气凸轮轴和摇臂后反复试车,发动机怠速抖动现象消失,故障排除。

故障总结

    对于气缸间歇密封不良的故障,若仅使用气缸压力表、气缸测漏仪和烟雾测漏仪进行检测,则很难发现故障点,从而会走很多弯路,而使用pico示波器和压力传感器WPS500X动态监测气缸压力变化,可让此类故障无处遁形。

加入直播交流群,以技会友

详询产品,请扫描下方二维码

虹科案例 | 2010款奔驰E260车冬天第1次冷启动后发动机抖动

故障现象

     一辆2010款奔驰E260车,搭载271 860发动机,累计行驶里程约为8.5万km。车主反映,冬天用车时,早上第1次冷起动发动机后,发动机怠速抖动,如果将发动机熄火后再次起动,抖动现象消失;热机起动一切正常。该故障是在2020年冬天出现的,当时维修过很多次,均未能解决,后来随着天气变暖,故障自动消失,也就没继续维修,但2021年冬天故障再现,于是将车开至我厂进行检修。

故障诊断

    接车后将车辆停放一夜,第2天早上试车,冷起动发动机,故障出现。用故障检测仪检测,发动机控制模块( ME )中存储有故障代码“P0303 检测到气缸3失火”;读取发动机失火数据,发现气缸3的失火次数在不断增加,说明气缸3工作不良。

图1 起动时气缸3的压力波形

图2 起动时气缸1的压力波形

     进一步与车主沟通得知,该车在其他维修厂已更换过气缸3的火花塞、点火线圈及喷油器等。脱开喷油器导线连接器,用pico示波器依次测量起动时气缸3和气缸1的压力波形(图1和图2 ),对比可知,气缸3的压力( 12.72 bar,1 bar=100 kPa )略低于气缸1的压力 ( 13.08 bar),气缸3进气行程产生了明显的真空,而气缸1进气行程没有产生真空。

    测量起动时气缸1的压力 (判缸信号)和进气脉动波形(图3 ),分析可知,在气缸3进气行程时,进气歧管中产生的真空比其他气缸低,加之此时气缸3内产生了异常的真空,即进气行程时,气缸3内的压力偏低,进气歧管内的压力偏高,由此推断气缸3的进气道堵塞或进气门开度不够。

图3 起动时气缸1的压力和进气脉动波形

    转动曲轴,同时用内窥镜观察气缸3进气门的开闭情况,发现一个进气门开闭正常,另一个进气门始终处于关闭状态。拆下气门室盖检查,发现气缸3的一个进气门摇臂掉落(图4 )。检查掉落的进气门摇臂,未见异常磨损。该摇臂为什么会掉落呢?进一步与车主交流得知,2020年夏天大修过发动机,怀疑当时维修人员没有安装好该摇臂,不过由于当时的气温较高,车辆没有表现出明显的故障现象,也就没有在意。

故障排除

    重新安装掉落的进气门摇臂,第2天早上试车,发动机抖动现象消失,故障排除。

图4 进气门摇臂掉落

故障总结

    为什么第2次起动发动机时故障现象就会消失?第1次起动与第2次起动有什么区别?经过测量发现,第1次起动后一个工作循环气缸3喷油2次(图5 ),而第2次起动后一个工作循环气3喷油1次(图6 ),单次喷油脉宽一致,均约为2ms。

图5  第1次起动后气缸3的点火和喷油波形

图6 第2次起动后气缸3的点火和喷油波形

    由此推断,气缸3的一个进气门无法打开,使气缸3进气量不足,第1次起动后气缸3喷油2次,混合气过浓,以致气缸3偶尔失火。

欢迎加入直播交流群,以技会友

欢迎加入直播交流群,以技会友

年后开课!2月18日虹科Pico汽车示波器与你不见不散!

我们携手走过了又一轮春秋

虹科Pico汽车示波器一直守候

新的一年,帮您赚钱!!

课程主题:传感器的测试与波形分析2

课程时间:2022年2月18日

 课程大纲:

 1、车身天线信号测试与波形分析(无钥匙进入系统)

 2、倒车雷达信号测试与波形3、车内超声波监控信号测试与波形分析

加入直播交流群,以技会友

虹科Pico汽车示波器学院 | 直播福利活动:免费送!

观看免费直播,赢超值福利

参与活动,免费送书!

活动一:【邀请达人榜】

获奖规则:

  1. 点击邀请,生成个人邀请海报,分享至朋友圈、聊天、其他社交媒体等

  2. 或点击屏幕右上角“…”分享至朋友圈、聊天、其他社交媒体等

通过以上两种方式邀请好友进直播间,后台会实时记录邀请人数,成为邀请达人榜前五名的学员即可获得奖品。(原则上每位学员仅一次获奖机会)

活动二:【互动问答达人榜】

获奖规则:

在直播课结束前会有提问环节,欢迎大家积极与老师交流课堂内容、示波器技术问题等。问题在直播过程中被老师选中并被回答的前10位提问者将免费获得价值168元的《汽车免拆诊断技术案例集锦》一本!

活动真实有效、积极参与赢大奖!

虹科Pico汽车示波器学院 | 第五课开课:传感器的测试与波形诊断分析

12月10日,虹科Pico汽车示波器学院第四课成功开课,至此,有关电池、起动和充电系统测试与波形诊断分析的课程暂时告一段落。本节课,戈老师详细的讲解了判断故障波形背后的理论逻辑,亲自用实车进行演示,耐心分析讲解测得的故障波形,并且以互动的形式加深学员们对于不同工具的理解。

第五课直播预告

课程主题

《传感器的测试与波形诊断分析1》

课程时间

2023年1月7日  晚20:00

课程大纲

1、氧传感器加热丝性能测试

2、普通氧传感器的电压波形测量与分析

3、宽带氧传感器的泵氧电流测试 电流倍数法

4、宽带氧传感器的泵氧电流测试 微电流法

直播交流群

 积极参与我们的活动的学员,已经陆续收到了《汽车免拆诊断技术案例集锦》和我们的产品目录,学员们在阅读后反馈获益匪浅,书中内容翔实,案例丰富,讲解示波器操作与波形分析透彻易懂。

直播回顾 | 虹科Pico汽车示波器学院开学第一课精彩瞬间

2022年11月12日,虹科Pico汽车示波器学院开学第一课成功开课。课程中,戈华飞老师详细讲解了示波器修车的优势、波形诊断的基础思维。戈老师在课程中向学员们讲解了,在什么情况下使用汽车示波器,从而提高修车效率,节省时间,以及它对偶发故障的捕捉、非模拟电压信号采集、物理量的测量等,不可替代的地方哪些。

问答环节

问:摩托车维修入手哪款示波器套装比较好?

答:不管你是维修汽油车、柴油车、摩托车、电动车、拖拉机甚至飞机,无所谓你修哪一款,你只要需要修机械的、电路的,Pico示波器都是可以测的。而且示波器的本身不仅仅是为了单纯的看波形,修车时你需要对波形进行分析。Pico的软件十分强大,通过本学期的课程,希望你能够学会如何利用Pico的软件,学会如何分析波形。

问:入手两通道示波器套装够不够用?

答:从我(戈老师)的角度来说是不够用的,因为两通道无法进行一个”组合“,你无法把整个系统看清楚;一旦系统看不清楚,就很难进行故障的分析。一通道、两通道的示波器通常用来测单个传感器的信号,例如某个电子元器件,并不能从”组合“的角度来系统诊断波形。因此我推荐大家从四通道起步,附件是可以后续根据你的需要来增配的,下节课我会详细给大家介绍。

问:用Pico示波器能测出以太网吗

答:以太网当然可以测。但测量以太网并没有大家想象的那么简单,它不是看波形就可以分析出来的。以太网是有协议的,且背后的原理比较复杂,需要更进阶的示波器选手来掌握。

虹科Pico汽车示波器学院直播交流群

以技会友,等待你的加入!

交流发电机AC纹波(有ECM控制)

这个测试的目的是评估发电机的整流输出,该发电机的输出受到发动机控制单元控制。

如何进行测试

  • 连接一条BNC测试线到示波器A通道,测试线正极接在发电机B+接线柱上,负极搭铁。
  • 最小化此帮助页面,您会看到PicoScope软件界面加载了一个示例波形,而且预设好了软件以便您采集波形。
  • 起动发动机,保持怠速运行。
  •  点击“开始”,开始观察实时读数。
  • 开启电子附属设备(车头灯和加热器等)。一些汽车可能需要发动机运行60秒或更长时间后,才开始充电。
  • 采集到波形后,“停止”示波器运行。
  • 关闭发动机。
  • 使用波形缓冲区放大 以及 测量等工具来观察和分析波形。

示例波形

波形注意点

这个波形有以下特征∶

  • 示例波形输出正确,且相位绕组或二极管(整流器组)没有故障。
  • 发电机的三个相位由原始的交流电(AC)被整流为直流电(DC),并且三个相位对发电机的输出都有贡献。● 如果发电机有一个二极管故障,波形上会周期性间歇地出现长长的向下的尾巴,并且总的电流输出的33%会损失掉。
  • 示波器侧边的电压量程不代表充电电压,但它代表直流(DC)纹波的上限和下限。皮形的幅值在不同的条件下会不一样∶蓄电池满充时显示的是更平坦的波形;而蓄电池不满电时显示的幅值更大,直至蓄电池充满电。

波形库

波形库添加通道的下拉菜单中选择Alternator AC ripple/Diode test

更多信息

充电电路的目的是提供一个调节的电压来给蓄电池充电,并补充汽车电子电路消耗的电流。交流发电机是汽车上相对新增的附属设备,它在1970年代取代了直流发电机。直流发电机的输出由发动机转速决定,不像交流发电机,它在发动机怠速时几乎没有输出 。众所周知,直流发电机怠速时充电警示灯会闪烁和需要频繁地更换碳刷。这些碳刷比交流发电机里的碳刷要大得多,因为它们承载了总的电流输出,而不像交流发电机的碳刷只承载励磁电流。励磁电流给电磁体通电来产生电流输出。励磁电流大约是6至8安培。

车型不同,发电机的功率也不同基础车型比配置有电子前后加热窗、加热后视镜、辅助照明、加热的电子调节座椅等的车型所需求的电量要小。交流发电机,顾名思义,产生一个交流电流(AC)输出;然后被整流为直流电流(DC),提供正确类型的电压来补充蓄电池,保持蓄电池在满充状态。

交流发电机有三个内部绕组,每两个相位间隔120度,需要9个“桥式”结构的二极管来对输出进行整流。电压由一个固态调节器控制,将电压输出保持在一个预先设定的数值上,这个数值约13.5至15伏特。电流输出由当时的需求决定。例如,刚刚用于长时间起动发动机的蓄电池需要的发电机电流输出比满充的蓄电池要大。

整流电压可以用万用表测量,但是当发电机有一个二极管失效而导致输出减少33%,万用表的读数依然显示正常。唯一正确的监测发电机输出的方法是在示波器上观察它的输出波形。

诊断故障代码

相关故障代码:

P0620

 P0621 

P0622

免责声明

此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology 不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

 

 

混动汽车相对压缩测试

该测试的目的是根据曲轴位置 (CKP) 传感器信号计算出的曲轴转速变化来检查混动汽车内燃机 (ICE) 内气缸的相对压缩。

警告

该测试涉及到具有以下条件的高压电气系统:

  • 能够造成致命电击的高压组件和电缆。
  • 储存的电能有可能引起爆炸或火灾。
  • 即使在关闭时仍可能保持危险电压的组件。
  • 可能影响心脏起搏器等医疗设备。

请参阅制造商提供车辆的特定信息来源,以确定您需要采取哪些预防措施以防止危险。

只有接受过“合格电工”等适当类型的特定培训并持有有效认证的合格技术人员才能执行此测试。

如何进行测试

  • 使用车辆制造商的数据找出 CKP 传感器输出电路和 CKP 传感器的信号盘齿数。
  • 连接一条 BNC 标准测试线到示波器 A通道 ,测试线彩色接头接在 CKP 传感器输出电路上,黑色接头搭铁。
  • 禁用燃油喷射系统以防止发动机启动。
  • 最小化此帮助页面,您会看到 PicoScope软件界面 加载了一个示例波形,而且预设好了软件以便您采集波形。
  • 点击“开始” ,开始观察实时读数。
  • 将车辆进入 READY 模式,等待内燃机开始工作。
  • 一旦采集到信号,示波器 会自动停止捕获。
  • 使用 波形缓冲区、 放大 以及 测量 等工具来观察和分析波形。

示例波形

波形注意点

这个波形有以下特征:

  • A通道:显示为感应式曲轴传感器波形(该测试同样适用于霍尔式曲轴传感器)。
  • CKP 传感器的输出随着曲轴转速的变化而变化,在更高的曲轴转速下信号波形振幅和振荡频率都更高(霍尔效应式曲轴传感器仅有振荡频率会发生变化)。
  • 波形中存在周期性间隙,这指示着时序参考点的位置。
  • 每个周期(相邻间隙)之间有 34 个波峰(或波谷),表示信号盘齿数为 34。间隙是由 2 个缺失的齿引起的,因此这辆车的总齿数为 36。

波形库

在 波形库 添加通道的下拉菜单中选择 Crankshaft sensor (Inductive)

更多信息

通常,在传统 ICE 内测试相对压缩时,我们会查看施加在 12 V 蓄电池上的电气负载(电压或电流),因为当气缸进入和退出压缩冲程时起动电机的扭矩会发生变化。

混合动力汽车(即全混合动力汽车,与轻度混合动力汽车相反)是通过连接到 ICE 曲轴的高压 (HV) 电机 (MG) 来起动发动机的。测量这些车辆电机的电气负载是不安全且具有高度干扰性的。然而,随着发动机气缸进入和退出压缩阶段,发动机转速分别会降低和增加,我们可以使用 CKP 传感器安全且非侵入式地得到起动速度,从而测试相对压缩。

计算起动转速以可视化相对压缩

在 PicoScope软件的 数学通道 功能里,有一个内置的 Crank 函数,可以用来将 CKP 传感器输出信号绘制出发动机起动转速曲线:

Crank 函数功能需要用到总齿数,即在补偿缺齿(缺齿作为计时参考点)后,曲轴一整圈内通过的齿数。通常发动机的齿数为 36 或 60,分别提供 10(360 度/36)或 6(360 度/60)度的曲曲轴转角。

通常曲轴每转一圈就会去除两个连续的齿,以提供正时参考标记。因此,如果物理计数齿数(例如围绕飞轮圆周),您需要将两个缺失的齿添加到物理计数中以获得 Crank 功能所需的总齿数。

查询车辆制造商的技术信息以获得总齿数。

或者,您可以使用 PicoScope软件 测量功能里的上升(或下降)沿计数进行测量,可以计算出实际牙齿数量。然后您需要添加缺齿数以补偿实际齿数。

使用 测量功能 里的上升沿计数算出信号盘齿数

使用 数学通道 里的 Crank 函数绘制曲轴转速曲线

上升沿计数的使用,请按照下列步骤操作:

  1. 点击 测量功能
  2. 选择 A 通道为测量源信号。
  3. 选择上升沿计数功能。
  4. 测量视图中单击上升沿计数,会弹出详细设置选项的窗口。
  5. 选择使用标尺,并且在标尺间测量。
  6. 拖出两个时间标尺放置在两个连续的参考标记间隙后的第一个峰值处(如上图所示)。
  7. 拖出两个信号标尺放置在 CKP 信号波形中心线上方和下方大致相等的高度(如上图所示)。
  8. 退出上升沿计数选项对话框。

显示的上升沿计数 34 等于物理齿数。在我们的示例中,曲轴每转一圈有两个缺失的齿,因此在物理齿数上增加两个,总齿数为 36。

正确输入总齿数和通道后,数学通道 Crank 功能将显示曲轴转速曲线(参见上面的示例)。

电机将以比传统 12 V 起动系统高得多的速度来起动 ICE:在上面的示例中,计算出发动机转速约为 840 RPM。看起来发动机在怠速运转,事实并非如此,它只是比传统 ICE 的起动速度更快。

数学通道 Crank 函数表明信号波形的波峰和波谷在几个循环周期中应该是保持一致的。如果某个或多个峰值低于相邻峰值,则可能存在压缩问题,需要进一步调查。

请注意,当 CKP 传感器信号通过参考位置时,数学通道 Crank 函数(发动机转速曲线)出现向下的尖峰。这是正常现象,是由于曲轴转速的计算方式造成的。 出于此测试的目的,可以忽略这些向下的尖峰。

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。

使用 COP 探头进行非侵入式测试

该测试的目的是使用非侵入式 COP 探头测量信号来确认纯电动汽车和混合动力汽车上高频组件、快速开关组件的运行情况。

警告

该测试涉及到具有以下条件的高压电气系统:

  • 能够造成致命电击的高压组件和电缆。
  • 储存的电能有可能引起爆炸或火灾。
  • 即使在关闭时仍可能保持危险电压的组件。
  • 可能影响心脏起搏器等医疗设备。

请参阅制造商提供车辆的特定信息来源,以确定您需要采取哪些预防措施以防止危险。

只有接受过“合格电工”等适当类型的特定培训并持有有效认证的合格技术人员才能执行此测试。

如何进行测试

  • 如果高压系统的任何部分或组件暴露在外面,请勿继续进行测试。
  • 连接 COP 探头到 示波器 A通道
  • 最小化此帮助页面,您会看到 PicoScope软件界面 加载了一个示例波形,而且预设好了软件以便您采集波形。
  • 控制并激活您要测量的系统或组件。
  • 点击“开始” ,开始观察实时读数。
  • 安全操纵 COP 探头,并将其放置在待测的系统和组件上。
  • 如果需要的话,您可以调整 A通道 量程。
  • 采集到波形后, “停止” 示波器运行。
  • 使用 波形缓冲区、 放大 以及 测量 等工具来观察和分析波形。

示例波形

波形注意点

这个波形有以下特征:

  • 当电动汽车从供电设备 (EVSE) 接收充电时,将 COP 探头放置在 Type 2 类别充电器至汽车充电口的外壳上,可以检测到以 50 Hz 振荡的信号波形。
  • 在大约 1.25 s 处,充电停止,振荡波形消失。

波形库

在 波形库 添加通道的下拉菜单中选择 COP and Signal Probe output voltage

更多信息

在示例波形中,COP 探头检测 EVSE 和车载充电机 (OBC) 之间电路中的振荡交流电,该交流电之后将整流为用于高压 (HV) 充电的直流电。因此,COP 探头可以提供一种安全方便且快速的检查方法,用于确认从 EVSE 到车辆的电荷传输。

COP 探头可用于确认其他具有高频或开关电压特性的电路是否存在电荷流动。

使用 COP 探头进行测量时,没出现波形并不能代表没有电压或电流(很可能是因为组件或电缆屏蔽得非常好,探头无法检测到它们); COP 探头只能用于已知存在电压或电流的场景。

COP 探头无法检测恒定的直流电压或电流,无论是高压组件还是其他地方。

始终确保 COP 探头及其线缆不在暴露的高压电路、高压组件下使用,并且远离旋转组件(无论是否移动)。

免责声明
此帮助主题如有更改,不另行通知。所包含的信息经过仔细检查并认为是正确的。此信息是我们研究和检测的一个例子,并不是固定的程序。对于不正确之处,Pico Technology不负任何责任。每个车辆都会不一样,且要求唯一的测试设置。